

Linetools

linetools is an in-development package for the analysis of 1-D
spectra, with the aim to become an `Astropy`_ affiliated package [http://www.astropy.org/affiliated/index.html]. Its core developers
work primarily on UV/optical/IR absorption line research, so most of the
functionality is aimed at the identification and analysis of
absorption lines. The eventual goal is to provide a set of tools
useful for both absorption and emission lines.

Note

linetools is still under active development. While the developers
strive to maintain compatibility in new releases, there may be
backwards-incompatible changes in future versions.

Getting Started

	Installation

	Changelog

Core classes

	AbsComponent

	AbsSystem

	AbsSightline

	RelAbund

	SolarAbund

	LineList

	SpectralLine

	XSpectrum1D

Graphical User Interfaces (GUIs)

	GUIs
	Notebooks

	Overview

	Continuum fitting

	XSpecGUI

	XAbsSysGui

Command line tools

	Scripts
	lt_xspec

	lt_plot

	lt_absline

	lt_radec

	lt_line

	lt_solabnd

	lt_continuumfit

Reference & API

	The linetools API

Indices and tables

	Index

	Module Index

	Search Page

Installation

Dependencies

Linetools depends on these packages:

	python [http://www.python.org/] versions 2.7, or 3.3 or later

	numpy [http://www.numpy.org/] version 1.11 or later

	`astropy`_ version 1.3 or later

	scipy [http://www.scipy.org/] version 0.16 or later

	matplotlib [http://matplotlib.org/] version 1.4 or later

	PyQT5 [https://wiki.python.org/moin/PyQt] version 5 (for GUIs)

	h5py [https://www.h5py.org/] version 2.6 (for data I/O)

We strongly recommend that you use Anaconda [https://www.continuum.io/downloads] to install them. With Anaconda
you can check for the presence and versions of the dependencies with:

conda list "^python|numpy|astropy|scipy|matplotlib|PyQT|h5py"

If you’re missing any, install them with (for example):

conda install astropy scipy matplotlib h5py

For PyQT, the current conda version is PyQT5. If you are still using
PyQT4, then you will need to update to use linetools GUIs:

conda install pyqt=5

If their versions are too old, update them with (for example):

conda update astropy

If you aren’t using Anaconda then all of the dependencies can also be
installed with pip.

Installing Linetools

There is currently a pip wheel on PyPi but it is woefully
out of date. We will try to update before long. But for now
follow the instructions in the section below,
Installing Linetools from Source to install linetools.

Also note, if you wish to have full functionality of the GUIs and are
using MacOSX, then you probably need to change
your backend from macosx to TkAgg in the matplotlibrc file.

Installing Linetools from Source

I just want to play with the code

Install the development version like this:

git clone https://github.com/linetools/linetools.git
cd linetools
python setup.py develop

Now you can easily make tweaks to the code, which are immediately
applied to your installed version (you’ll have to reload the relevant
modules to see those changes in an existing Python session, though).

I want to make a code contribution to linetools

Fantastic! In that case, follow the Astropy developer guidelines [http://docs.astropy.org/en/stable/development/workflow/development_workflow.html],
replacing every instance of astropy in those instructions with
linetools. This will install a ‘fork’ of linetools that you can
use to submit code changes to the main repository.

Running Tests

To test your installation, run:

python -c 'import linetools; linetools.test()'

The tests take a couple of minutes to finish. If you notice any
failures, we’d love you to report them on the linetools issue tracker [http://github.com/linetools/linetools/issues].

Before Launching GUIs

If you are a Mac user, we highly recommend that you set your
matplotlib backend from MacOSX to TkAgg (or another option, see
backends [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend]).

Building Documentation

Only do this if you’re a developer! If you want build the
documentation, you also need to install Sphinx (version 1.3+):

conda install sphinx

If you’d like to generate inheritance diagrams in the docs then you
also need to install graphviz (MacOSX [http://www.graphviz.org/Download_macos.php], Ubuntu [http://www.graphviz.org/Download_linux_ubuntu.php]), but this isn’t
required. Once sphinx is installed, change to the /docs directory
under the source directory and run:

make html

The documentation should now be in _build/html.

Changelog

0.3 (Unreleased)

Updates

	Added extra attributes to AbsComponents

	Added script to get HST/COS life-time position from date

	Added Cashman+2017 catalog in LineList

	Significant refactor of AbsComponent

	LineList “AGN” added

Bug fixes

0.2 (2017-10-24)

Updates

	Extra features to main Objects like XSpectrum1D, AbsComponent, AbsLine, LineList

	Added some extra emisison lines to Galaxy LineList

	Refactor from pyQt4 -> pyQt5

	Improvements to GUIs and scripts

	Added EmLine and EmSystem classes

	LineList.available_transitions() no longer has key argument n_max

	LineList: extra attributes for transitions added (ion_name, log(w*f), abundance, ion_correction, rel_strength)

	ASCII tables with no header are required to be 4 columns or less for io.readspec to work

	Modify XSpectrum1D to use masked numpy arrays

	Enable hdf5 I/O [requires h5py]

	Added .header property to XSpectrum1D (reads from .meta)

	Added XSpectrum1D.write, a generic write wrapper

	Added XSpectrum1D.get_local_s2n, a method to calculate average signal-to-noise at a given wavelength

	Added xabssysgui GUI

	Added new LineList(e.g. Galaxy)

	Added EmLine child to SpectralLine

	Added LineLimits class

	Added SolarAbund class

	Added lt_radec and lt_line scripts

	Added LSF class to handle line-spread-functions. Currently implemented for HST/COS and most HST/STIS configurations.

Bug fixes

	Fix XSpectrum1D.from_tuple to allow an astropy table column to
specify wavelengths and fluxes.

0.1 (2016-01-31)

First public release.

AbsComponent Class

Notebooks

	Simple Examples

	Column Densities

Overview

This Class is designed to organize and analyze a set of
absorption lines.

By definition, an AbsComponent is a unique collection of
absorption lines specified by:

	Property

	Variable

	Type

	Description

	RA, DEC

	radec

	tuple or coord

	RA,DEC in deg or astropy.coordinate

	Z, ion

	Zion

	tuple

	Atomic Number (Z) and ionization state (ion)

	Redshift

	zcomp

	float

	Absorption redshift of the component

	Velocity limits

	vlim

	Quantity array

	-/+ velocity limits of the component

	Energy level

	Ej

	Quantity

	Energy of the level relative to ground

	Isotope

	A

	int

	Atomic Mass number (optional)

Instantiation

The AbsComponent Class may be instantiated in a few ways.
The default sets the properties listed above:

abscomp = AbsComponent((10.0*u.deg, 45*u.deg), (14,2), 1.0, [-300,300]*u.km/u.s)

More commonly, one will instantiate with one
~linetools.spectralline.AbsLine object:

lya = AbsLine(1215.670*u.AA, z=2.92939)
lya.limits.set([-300.,300.]*u.km/u.s) # vlim
abscomp1 = AbsComponent.from_abslines([lya])

or multiple:

lyb = AbsLine(1025.7222*u.AA, z=lya.z)
lyb.limits.set([-300.,300.]*u.km/u.s) # vlim
abscomp = AbsComponent.from_abslines([lya,lyb])

One may also instantiate from a dict, usually read
from the hard-drive (e.g. a JSON file):

abscomp = AbsComponent.from_dict(idict)

One may also generate a set of components from a larger
list of AbsLines:

complist = ltiu.build_components_from_abslines([lya,lyb,SiIIlines[0],SiIIlines[1]])

Attributes

There is a set of default attributes that are initialized at Instantiation
and kepy in an attrib dict. These are:

init_attrib = {'N': 0./u.cm**2, 'sig_N': [0.,0.]/u.cm**2, 'flag_N': 0, # Column
 'logN': 0., 'sig_logN': np.array([0.,0.]),
 'b': 0.*u.km/u.s, 'sig_b': 0.*u.km/u.s, # Doppler
 'vel': 0*u.km/u.s, 'sig_vel': 0*u.km/u.s
 }

One can access these attributes with standard . syntax, e.g.:

logN = abscomp.logN # This accesses the logN value from the internal attrib dict

Inspecting

Here are a few simple methods to explore/inspect the class.

Generate a Table

If the class contains one or more AbsLines, you may generate a
~astropy.table.Table from their attributes and data:

comp_tbl = abscomp.build_table()

Show a Stack Plot

If the AbsLine have spectra attached to them (in attrib[‘spec’]),
a stack plot (aka velocity plot) is generated with:

abscomp.stack_plot()

Apparent Column Densitities

Show a plot of the apparent column density profiles, \(N_a\):

abscomp.plot_Na()

Analysis

Here are some methods related to analysis.

Synthesize Columns

If one inputs a set of AbsLine(s) with column density measurements,
the column densities are synthesized at instantiation unless one
sets skip_synth=True.

There are two approaches to synthesis:

Standard

The default uses the synthesize_colm() method.
Positive, unsaturated detections
are combined in a weighted mean whereas limits are compared
and the most sensitive one is adopted.:

Here is the set of rules:

	If all measurements are upper limits, take the lowest value and flag as an upper limit (flag_N=3).

	If all measurements are a mix of upper and lower limits, take the highest lower limit and flag as a lower limit (flag_N=2).

	If one or more measurements are a proper detection, take the weighted mean of these and flag as a detection (flag_N=1).

A future implementation will introduce a flag for
bracketing an upper and lower limit value.

Median

Another option for synthesizing the column densities and other attributes
is to take the median values. This is performed when one
passes adopt_median=True to the from_abslines() call, e.g.:

abscomp = AbsComponent.from_abslines([lya,lyb], adopt_median=True)

The current code computes the median on all input
values and does not consider the flag_N values for
the input AbsLine objects.

Curve of Growth

A standard, single-component curve-of-growth (COG) analysis may be
performed on the set of AbsLines:

COG_dict = abscomp.cog(show_plot=True)

The output dict includes:

	Key

	Type

	Description

	EW

	Quantity array

	Input equivalent widths

	sigEW

	Quantity array

	Input error in equivalent widths

	f

	ndarray

	Input f-values

	wrest

	Quantity array

	Input rest wavelengths

	logN

	float

	Output fitted column density (log10)

	sig_logN

	float

	Output error in fitted logN

	b

	Quantity

	Output b-value (km/s)

	sig_b

	Quantity

	Output error in b-value (km/s)

Misc

I/O

One may generate a dict of the key properties of the AbsComponent
with the to_dict() method:

cdict = component.to_dict()

One may also wish to Voigt profile fit components with one
of a number of software packages (e.g. ALIS, JoeBVP). To
generate an input file for JoeBVP use:

from linetools.isgm.io import write_joebvp_from_components
write_joebvp_from_components(component_list, specfile, 'output_file.ascii')

Similarly, one can generate a list of components from an outputted
JoeBVP file:

from linetools.isgm.io import read_joebvp_to_components
comp_list = read_joebvp_to_components('joebvp_file.out')

Synthesize Components

This method combines a list of two or more components into a new one.
It checks first for consistent RA/DEC, Zion, and Ej. It does
not place any constraints on z and vlim. The column density of
the new component is the sum of the input ones (with rules for
limits). And the redshift and vlim are set to encompass the
velocities of the input components.:

from linetools.isgm import utils as ltiu
synth_SiII = ltiu.synthesize_components([SiIIcomp1,SiIIcomp2])

See the Examples for the AbsComponent Class (v0.3) notebook for a complete example.

Tables

You can also create a list of components using an input astropy.table.Table object
(mandatory column names are
[‘RA’, ‘DEC’, ‘ion_name’, ‘z_comp’, ‘vmin’, ‘vmax’, ‘Z’, ‘ion’, ‘Ej’]):

from astropy.table import Table
tab = Table()
tab['ion_name'] = ['HI', 'HI', 'CIV', 'SiII', 'OVI']
tab['Z'] = [1,1,4,14,8]
tab['ion'] = [1,1,4,2,6]
tab['Ej'] = [0.,0.,0.,0.,0.]/u.cm
tab['z_comp'] = [0.05, 0.0999, 0.1, 0.1001, 0.3]
tab['logN'] = [12.0, 13.0., 13.0, 14.0, 13.5]
tab['sig_logN'] = [0.1, 0.12., 0.15, 0.2, 0.1]
tab['flag_logN'] = [1, 1, 2, 0, 1]
tab['RA'] = 100.0 * u.deg * np.ones(len(tab))
tab['DEC'] = -0.8 * u.deg * np.ones(len(tab))
tab['vmin'] = -50 * u.km/u.s * np.ones(len(tab))
tab['vmax'] = 50 * u.km/u.s * np.ones(len(tab))

complist = ltiu.complist_from_table(tab)

These components will not have AbsLines defined by default.
However, it is very easy to append
AbsLines to these components for a given observed wavelength
and minimum rest-frame equivalent width:

add abslines
wvlim = [1100, 1500]*u.AA
for comp in complist:
 comp.add_abslines_from_linelist(llist='ISM', wvlim=wvlim, min_Wr=0.01*u.AA, chk_sep=False)

This will look for transitions in the LineList(‘ISM’) object and append those
expected to be within wvlim
to each corresponding AbsComponent in the complist. In this example, only
those AbsLines expected to have rest-frame
equivalent widths larger than 0.01*u.AA will be appended, but if you wish to
include all of the available AbsLines
you can set min_Wr=None. Here, we have set chk_sep=False to avoid checking
for coordinates because by construction the
individual AbsLines have the same coordinates as the corresponding AbsComponent.

One can, of course, go the other way and generate a Table
from a list of components:

tab2 = ltiu.table_from_complist(complist)

If you wish to write to disk, we recommend that you use
the astropy format: ascii.ecsv

Use Components to create a spectrum model

You can create a spectrum model using a list of AbsComponents, e.g.:

from linetools.analysis import voigt as lav
wv_array = np.array(1100,1500, 0.1)*u.AA
model = lav.voigt_from_components(wv_array, complist)

In this manner, model is a XSpectrum1D object with the the AbsComponents contained in the complist list.
You may also add a convolution with a given kernel to compare with observations from different spectrographs,
in which case you can use:

model = lav.voigt_from_components(wv_array, complist, fwhm=3)

This is same as before but the model is convolved with a Gaussian kernel of FWHM of 3 pixels.

Examples for the AbsComponent Class (v0.3)

Download this notebook.

%matplotlib inline

suppress warnings for these examples
import warnings
warnings.filterwarnings('ignore')

import
try:
 import seaborn as sns; sns.set_style("white")
except:
 pass

import astropy.units as u
from linetools.spectralline import AbsLine
from linetools.isgm import utils as ltiu
from linetools.analysis import absline as laa
from linetools.spectra import io as lsio
from linetools.isgm.abscomponent import AbsComponent

import imp
lt_path = imp.find_module('linetools')[1]

Instantiate

Standard

abscomp = AbsComponent((10.0*u.deg, 45*u.deg), (14,2), 1.0, [-300,300]*u.km/u.s)
abscomp

<AbsComponent: 00:40:00 +45:00:00, Name=SiII_z1.00000, Zion=(14,2), Ej=0 1 / cm, z=1, vlim=-300 km / s,300 km / s>

From AbsLines

From one line

lya = AbsLine(1215.670*u.AA)
lya.analy['vlim'] = [-300.,300.]*u.km/u.s
lya.attrib['z'] = 2.92939

abscomp = AbsComponent.from_abslines([lya])
print(abscomp)
abscomp._abslines

<AbsComponent: 00:00:00 +00:00:00, Name=HI_z2.92939, Zion=(1,1), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,300 km / s>

[<AbsLine: HI 1215, wrest=1215.6700 Angstrom>]

From multiple

lyb = AbsLine(1025.7222*u.AA)
lyb.analy['vlim'] = [-300.,300.]*u.km/u.s
lyb.attrib['z'] = lya.attrib['z']

abscomp = AbsComponent.from_abslines([lya,lyb])
print(abscomp)
abscomp._abslines

<AbsComponent: 00:00:00 +00:00:00, Name=HI_z2.92939, Zion=(1,1), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,300 km / s>

[<AbsLine: HI 1215, wrest=1215.6700 Angstrom>,
 <AbsLine: HI 1025, wrest=1025.7222 Angstrom>]

Methods

Generate a Component Table

lya.attrib['logN'] = 14.1
lya.attrib['sig_logN'] = 0.15
lya.attrib['flag_N'] = 1
laa.linear_clm(lya.attrib)
lyb.attrib['logN'] = 14.15
lyb.attrib['sig_logN'] = 0.19
lyb.attrib['flag_N'] = 1
laa.linear_clm(lyb.attrib)

(<Quantity 141253754462275.53 1 / cm2>, <Quantity 61797269977312.6 1 / cm2>)

abscomp = AbsComponent.from_abslines([lya,lyb])
comp_tbl = abscomp.build_table()
comp_tbl

<QTable length=2>

	wrest	z	flag_N	logN	sig_logN

	Angstrom				

	float64	float64	int64	float64	float64

	1215.67	2.92939	1	14.1	0.15

	1025.7222	2.92939	1	14.15	0.19

Synthesize multiple components

SiIItrans = ['SiII 1260', 'SiII 1304', 'SiII 1526']
SiIIlines = []
for trans in SiIItrans:
 iline = AbsLine(trans)
 iline.attrib['logN'] = 12.8 + np.random.rand()
 iline.attrib['sig_logN'] = 0.15
 iline.attrib['flag_N'] = 1
 iline.attrib['z'] = 2.92939
 iline.analy['vlim'] = [-300.,50.]*u.km/u.s
 , = laa.linear_clm(iline.attrib)
 SiIIlines.append(iline)
SiIIcomp = AbsComponent.from_abslines(SiIIlines)
SiIIcomp.synthesize_colm()

SiIIlines2 = []
for trans in SiIItrans:
 iline = AbsLine(trans)
 iline.attrib['logN'] = 13.3 + np.random.rand()
 iline.attrib['sig_logN'] = 0.15
 iline.attrib['flag_N'] = 1
 iline.attrib['z'] = 2.92939
 iline.analy['vlim'] = [50.,300.]*u.km/u.s
 , = laa.linear_clm(iline.attrib)
 SiIIlines2.append(iline)
SiIIcomp2 = AbsComponent.from_abslines(SiIIlines2)
SiIIcomp2.synthesize_colm()

abscomp.synthesize_colm()
[abscomp,SiIIcomp,SiIIcomp2]

[<AbsComponent: 00:00:00 +00:00:00, Name=HI_z2.92939, Zion=(1,1), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,300 km / s, logN=14.1172, sig_N=0.117912, flag_N=1>,
 <AbsComponent: 00:00:00 +00:00:00, Name=SiII_z2.92939, Zion=(14,2), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,50 km / s, logN=12.9226, sig_N=0.112727, flag_N=1>,
 <AbsComponent: 00:00:00 +00:00:00, Name=SiII_z2.92939, Zion=(14,2), Ej=0 1 / cm, z=2.92939, vlim=50 km / s,300 km / s, logN=13.8523, sig_N=0.0897197, flag_N=1>]

synth_SiII = ltiu.synthesize_components([SiIIcomp,SiIIcomp2])
synth_SiII

<AbsComponent: 00:00:00 +00:00:00, Name=SiII_z2.92939, Zion=(14,2), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,300 km / s, logN=13.9006, sig_N=0.0811523, flag_N=1>

Generate multiple components from abslines

comps = ltiu.build_components_from_abslines([lya,lyb,SiIIlines[0],SiIIlines[1]])
comps

[<AbsComponent: 00:00:00 +00:00:00, Name=HI_z2.92939, Zion=(1,1), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,300 km / s>,
 <AbsComponent: 00:00:00 +00:00:00, Name=SiII_z2.92939, Zion=(14,2), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,50 km / s>]

Generate an Ion Table

tbl = ltiu.iontable_from_components([abscomp,SiIIcomp,SiIIcomp2])
tbl

<QTable length=2>

	Z	ion	A	Ej	z	vmin	vmax	flag_N	logN	sig_logN

						km / s	km / s			

	int64	int64	int64	float64	float64	float64	float64	int64	float64	float64

	1	1	0	0.0	2.92939	-300.0	300.0	1	14.1172024817	0.117911610801

	14	2	0	0.0	2.92939	-300.0	300.0	1	13.9006157733	0.0811522506077

Stack plot

Load a spectrum

xspec = lsio.readspec(lt_path+'/spectra/tests/files/UM184_nF.fits')
lya.analy['spec'] = xspec
lyb.analy['spec'] = xspec

Show

abscomp = AbsComponent.from_abslines([lya,lyb])
abscomp.stack_plot()

[image: _images/AbsComponent_examples_30_0.png]

Column Densities with AbsComponent

Download this notebook.

%matplotlib inline

suppress warnings for these examples
import warnings
warnings.filterwarnings('ignore')

imports
try:
 import seaborn as sns; sns.set(context="notebook",font_scale=2)
except:
 pass

from scipy import integrate
import astropy.units as u

from linetools.isgm import abscomponent as lt_abscomp
from linetools.spectralline import AbsLine
from linetools.spectra.xspectrum1d import XSpectrum1D
#
import imp
lt_path = imp.find_module('linetools')[1]

Read Spec

xspec = XSpectrum1D.from_file(lt_path+'/spectra/tests/files/UM184_nF.fits')

Generate a few AbsLines

SiIItrans = ['SiII 1260', 'SiII 1304', 'SiII 1526', 'SiII 1808']

abslines = []
for trans in SiIItrans:
 iline = AbsLine(trans)
 iline.attrib['z'] = 2.92939
 iline.analy['vlim'] = [-250.,80.]*u.km/u.s
 iline.analy['spec'] = xspec
 abslines.append(iline)
#
abslines

[<AbsLine: SiII 1260, wrest=1260.4221 Angstrom>,
 <AbsLine: SiII 1304, wrest=1304.3702 Angstrom>,
 <AbsLine: SiII 1526, wrest=1526.7070 Angstrom>,
 <AbsLine: SiII 1808, wrest=1808.0129 Angstrom>]

Generate the Component

abscomp = lt_abscomp.AbsComponent.from_abslines(abslines)

try:
 sns.set(context="notebook",font_scale=2)
except:
 pass
abscomp.stack_plot()

[image: _images/AbsComponent_ColumnDensities_10_0.png]

Synthesize/Measure AODM Column Densities

abscomp.synthesize_colm(redo_aodm=True)

abscomp.logN

13.594445560856554

for iline in abscomp._abslines:
 print(iline.wrest, iline.attrib['flag_N'], iline.attrib['logN'], iline.attrib['sig_logN'])

1260.4221 Angstrom 1 13.5883729709 0.0150745701489
1304.3702 Angstrom 1 13.7708705955 0.0862006463782
1526.707 Angstrom 1 13.6707360009 0.0640855113383
1808.0129 Angstrom 3 0.0 0.50976387151

Apparent Column Density Plot

abscomp.plot_Na()

[image: _images/AbsComponent_ColumnDensities_18_0.png]

COG

\(F(\tau_0)\)

Definition
\(F(\tau_0) = \int_0^\infty dx \, [1- \rm e^{-\tau_0 \rm e^{-x^2}}]\)

def ftau_intgrnd(x,tau0=0.1):
 return 1 - np.exp(-tau0 * np.exp(-x**2))

neval = 10000
lgt = np.linspace(-3, 9, neval)
all_tau0 = 10.**lgt
Ftau = np.zeros(neval)
for jj,tau0 in enumerate(all_tau0):
 Ftau[jj], ferr = integrate.quad(ftau_intgrnd, 0, np.inf, args=(tau0,))

Damped limit (not accurate enough)
damp_lgt = np.linspace(6, 10, 100)
damp_tau0 = 10.**damp_lgt
damp_Ftau = np.sqrt(np.log(damp_tau0))

import matplotlib.pyplot as plt
plt.plot(lgt, Ftau, damp_lgt, 1.015*damp_Ftau)

[<matplotlib.lines.Line2D at 0x10c48b5c0>,
 <matplotlib.lines.Line2D at 0x10c464e10>]

[image: _images/AbsComponent_ColumnDensities_25_1.png]

Perform and Plot

abscomp = lt_abscomp.AbsComponent.from_abslines(abslines)
COG_dict = abscomp.cog(redo_EW=True, show_plot=True)

[image: _images/AbsComponent_ColumnDensities_27_0.png]
Output
COG_dict

{'EW': <Quantity [0.43129915, 0.06810455, 0.11137664,-0.01950807] Angstrom>,
 'b': <Quantity 49.22868767597288 km / s>,
 'f': array([1.18 , 0.0863 , 0.127 , 0.00208]),
 'logN': 13.693355878125537,
 'parm': <single_cog_model(logN=13.693355878125537, b=49.22868767597288)>,
 'redEW': array([3.42186280e-04, 5.22125891e-05, 7.29522068e-05,
 -1.07897867e-05]),
 'sig_EW': <Quantity [0.0129661 , 0.01440996, 0.01686854, 0.02102034] Angstrom>,
 'sig_b': <Quantity 6.356381185059458 km / s>,
 'sig_logN': 0.054323725737309987,
 'wrest': <Quantity [1260.4221, 1304.3702, 1526.707 , 1808.0129] Angstrom>}

AbsSystem Class

Notebooks

	Simple Examples

Overview

This Class is designed to organize and analyze an absorption system.
This is generally constructed of one or more AbsComponent Class.
The base class is abstract, i.e. one must instantiate one of its
flavors (e.g. HILyman, MgII, LLS, DLA).

By definition, an AbsSystem is a unique collection of
absorption components. It is specified by:

	Property

	Variable

	Type

	Description

	RA, DEC

	radec

	tuple or coord

	RA,DEC in deg or astropy.coordinate

	Redshift

	z

	float

	absorption redshift

	Velocity limits

	vlim

	Quantity array

	-/+ velocity limits of the system

Instantiation

The AbsSystem Class may be instantiated in a few ways.
The default sets the properties listed above:

gensys = GenericAbsSystem((15.23*u.deg,-23.22*u.deg), 1.244, [-500,500]*u.km/u.s, NHI=16.)

More commonly, one will instantiate with one or more AbsComponent objects:

HI Lya, Lyb
radec = SkyCoord(ra=123.1143*u.deg, dec=-12.4321*u.deg)
lya = AbsLine(1215.670*u.AA, z=2.92939)
lya.limits.set([-300.,300.]*u.km/u.s) # vlim
lyb = AbsLine(1025.7222*u.AA, z=lya.attrib['z'])
lyb.limits.set([-300.,300.]*u.km/u.s) # vlim
abscomp = AbsComponent.from_abslines([lya,lyb])
abscomp.coord = radec
Finish
HIsys = LymanAbsSystem.from_components([abscomp])

One may also instantiate from a dict, usually read
from the hard-drive:

abscomp = AbsSystem.from_dict(idict)

Attributes

Sub Classes

Generic

A catch-all subclass for AbsSystem.
More options are provided in
pyigm [https://github.com/pyigm/pyigm].

Plots

Methods

AbsLines

There are a few methods related to the AbsLine objects within
an AbsSystem.

List

One can generate a list of all the AbsLine objects
with:

lines = abssys.list_of_abslines()

get absline

One can retrieve one or more AbsLine objects matching the name
or rest-wavelength of a transition, e.g.

lyb = abssys.get_absline('HI 1025')
or
lyb = abssys.get_absline(1025.72*u.AA) # Nearest 0.01 A is required

measure_restew

Measure the rest-frame equivalent widths for all AbsLine objects
in the system.
In addition to the inputs described in measure_ew,
each line to be measured must have line.analy[‘do_anlaysis’]=1.
Here is an example:

abssys.measure_restew(spec=xspec_object)

fill transitions

Generate an astropy.Table of information on the absorption lines
in the system. This is stored in the ._trans attribute:

abssys.fill_trans()
print(abssys._trans)

Components

~linetools.igsm.abssystem.get_component
grabs components matching an input where the input is either
a tuple of (Z, ion) or an AbsLine:

SiII = gensys.get_component((14,2))

~linetools.igsm.abssystem.update_component_colm synthesizes
and updates the column densities for the components.:

gensys.update_component_colm()

ionN

Fill the _ionN attribute with a QTable of column densities.
These are derived from the components

abssys.fill_ionN()
print(abssys._ionN)

Output

One may generate a dict of the key properties of the AbsSystem
with the to_dict() method:

odict = HIsys.to_dict()

This dict is required to be JSON compatible.

Examples for AbsSystem Class (v1.1)

Download this notebook.

suppress warnings for these examples
import warnings
warnings.filterwarnings('ignore')

imports
import imp
from astropy.coordinates import SkyCoord
import astropy.units as u

from linetools.isgm import abssystem as lt_absys
from linetools.spectralline import AbsLine
from linetools.isgm.abscomponent import AbsComponent

Simple instantiation

Standard init

radec = SkyCoord(ra=123.1143*u.deg, dec=-12.4321*u.deg)
gensys = lt_absys.GenericAbsSystem(radec, 1.244, [-500,500]*u.km/u.s, NHI=16.)
gensys

<GenericAbsSystem: name=Foo type=Generic, 08:12:27.432 -12:25:55.56, z=1.244, NHI=16>

From components

One component

HI Lya, Lyb
lya = AbsLine(1215.670*u.AA)
lya.analy['vlim'] = [-300.,300.]*u.km/u.s
lya.attrib['z'] = 2.92939
lyb = AbsLine(1025.7222*u.AA)
lyb.analy['vlim'] = [-300.,300.]*u.km/u.s
lyb.attrib['z'] = lya.attrib['z']
abscomp = AbsComponent.from_abslines([lya,lyb])
abscomp.coord = radec

linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/morton03_table2.fits.gz
linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/morton00_table2.fits.gz
linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/verner96_tab1.fits.gz
linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/verner94_tab6.fits
linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/EUV_lines.ascii
read_sets: Using set file --
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/lists/sets/llist_v1.0.ascii

HILyman system
HIsys = lt_absys.LymanAbsSystem.from_components([abscomp])
print(HIsys)
print(HIsys._components)

<LymanAbsSystem: name=J081227.432-122555.56_z2.929 type=HILyman, 08:12:27.432 -12:25:55.56, z=2.92939, NHI=0>
[<AbsComponent: 08:12:27.432 -12:25:55.56, Name=HI_z2.92939, Zion=(1,1), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,300 km / s>]

Multiple components

SiII
SiIItrans = ['SiII 1260', 'SiII 1304', 'SiII 1526', 'SiII 1808']
abslines = []
for trans in SiIItrans:
 iline = AbsLine(trans)
 iline.attrib['z'] = 2.92939
 iline.analy['vlim'] = [-250.,80.]*u.km/u.s
 abslines.append(iline)
#
SiII_comp = AbsComponent.from_abslines(abslines)
SiII_comp.coord = radec

Generic
imp.reload(lt_absys)
LLSsys = lt_absys.GenericAbsSystem.from_components([abscomp,SiII_comp])
print(LLSsys)
print(LLSsys._components)

<GenericAbsSystem: name=Foo type=Generic, 08:12:27.432 -12:25:55.56, z=2.92939, NHI=0>
[<AbsComponent: 08:12:27.432 -12:25:55.56, Name=HI_z2.92939, Zion=(1,1), Ej=0 1 / cm, z=2.92939, vlim=-300 km / s,300 km / s>, <AbsComponent: 08:12:27.432 -12:25:55.56, Name=SiII_z2.92939, Zion=(14,2), Ej=0 1 / cm, z=2.92939, vlim=-250 km / s,80 km / s>]

Methods

List of AbsLines

lines = LLSsys.list_of_abslines()
lines

[<AbsLine: HI 1215, wrest=1215.6700 Angstrom>,
 <AbsLine: HI 1025, wrest=1025.7222 Angstrom>,
 <AbsLine: SiII 1260, wrest=1260.4221 Angstrom>,
 <AbsLine: SiII 1304, wrest=1304.3702 Angstrom>,
 <AbsLine: SiII 1526, wrest=1526.7070 Angstrom>,
 <AbsLine: SiII 1808, wrest=1808.0129 Angstrom>]

Single Line

lyb = LLSsys.get_absline('HI 1025')
lyb

<AbsLine: HI 1025, wrest=1025.7222 Angstrom>

lyb = LLSsys.get_absline(1025.72*u.AA)
lyb

<AbsLine: HI 1025, wrest=1025.7222 Angstrom>

lyb.wrest

\[1025.7222 \; \mathrm{\mathring{A}}\]

AbsSightline Class

Notebooks

Overview

This Class is designed to organize the absorption systems
along a single sightline. It may be most commonly used
for extragalactic sightlines, but it can be applied to the
ISM as well.

By definition, an AbsSightline is a unique collection of
absorption components. The only quantities required

to define the AbsSightline are its coordinates on the sky.

Instantiation

The AbsSightline Class may be instantiated in a few ways.
The default sets the properties listed above:

abssl = GenericAbsSightline((10.0*u.deg, 45*u.deg))

More commonly, one will instantiate with one
a set of components:

lya = AbsLine('HI 1215', z=2.3)
 lya.limits.set([-300.,300.]*u.km/u.s) # vlim
 lyb = AbsLine(1025.7222*u.AA, z=2.3)
 lyb.limits.set([-300.,300.]*u.km/u.s) # vlim
 abscomp = AbsComponent.from_abslines([lya,lyb])
 abscomp.coord = ltu.radec_to_coord((10.*u.deg, 45*u.deg))
 abssl = GenericAbsSightline.from_components([abscomp])

Inspecting

Here are a few simple methods to explore/inspect the class.

Generate a Table

If the class contains one or more AbsComponent obejcts, you may generate a
~astropy.table.Table from their attributes and data:

comp_tbl = abssl.build_table()

I/O

One may generate a dict of the key properties of the AbsSystem
with the to_dict() method:

asldict = abssl.to_dict()

This can then be written to disk with a JSON or yaml dump.

RelAbund Class

Notebooks

Overview

This class packages the relative abundances of an object, typically
an AbsSystem.

Instantation

Init

One can instantiate via the init and then fill the
data dict. This is a bit cumbersome and not
especially recommended. But here is an example.

To begin, make a new class instance:

XY = RelAbund()
Loading abundances from Asplund2009

Then load data into the data dict. Here is an example:

XY._data = {6: dict(flag=1, XH=-1., sigXH=0.2, sig=0.05),
 8: dict(flag=2, XH=-1.4, sigXH=0.25, sig=0.05),
 14: dict(flag=1, XH=-1.1, sigXH=0.25, sig=0.05),
 26: dict(flag=1, XH=-1.4, sigXH=0.25, sig=0.05),
 32: dict(flag=3, XH=-0.8, sigXH=0.25, sig=0.05),
 }

The flag value indicate the type of measurement:

	Flag

	Description

	1

	Standard value (and error)

	2

	Lower limit (e.g. saturated line)

	3

	Upper limit (e.g. blend or non-detection)

Ionic Column Table

More frequent usage will be to instantiate using an input
table of column density measurements, e.g.:

dla.XY = RelAbund.from_ionclm_table((1,dla.NHI, dla.sig_NHI[0]), dla._ionN)

See pyigm DLA abund Notebook for more.

By Hand

For quick and dirty abundance calculations, you may find
the from_pair method useful:

Usage

You may grab the data for any element with item syntax:

CH = XY[6]
{'flag': 1, 'sig': 0.2, 'val': -1.0}
CH = XY['C']

Element ratios can be accessed by providing a tuple of
atomic number or element name:

SiFe = XY['Si', 'Fe']
{'flag': 1, 'sig': 0.070710678118654766, 'val': 0.2999999999999998}

You may generate an astropy Table of the X/Y values:

tbl = XY.table() # For X/H
tbl = XY.table('Fe') # For X/Fe

SolarAbund Class

Notebooks

	Simple Examples

Overview

This class provides access to element abundance ratios measured in (or
nearby) the Sun.

To access the abundances, make a new class instance:

>>> from linetools.abund import solar as labsol
>>> sol = labsol.SolarAbund()
Loading abundances from Asplund2009
Abundances are relative by number on a logarithmic scale with H=12

Then select the element you want by either its name or atomic number:

>>> print(sol['C'])
8.43
>>> print(sol[6])
8.43

Currently the abundances from Asplund et al. 2009 are available, and
in future more references will be included.

Multiple elements can also be selected:

>>> print(sol['C', 'O'])
[8.43 8.69]

Element ratios can be accessed using the get_ratio method:

>>> print(sol.get_ratio('C/Fe'))
0.98

Examples with the SolarAbund Class (v1.1)

Download this notebook.

import
from linetools.abund import solar as labsol

Init

sol = labsol.SolarAbund()

Loading abundances from Asplund2009
Abundances are relative by number on a logarithmic scale with H=12

sol

<SolarAbund: Asplund2009>

Usage

Simple calls
print(sol['C'])
print(sol[6])

8.43
8.43

Ratio
print(sol.get_ratio('C/Fe'))

0.98

Multiple calls
print(sol[6,12,'S'])

[8.43 7.53 7.15]

Bits and pieces

from linetools.abund import ions as laions

Ion name
laions.ion_name((6,2))

'CII'

Name to ion
laions.name_ion('CII')

(6, 2)

from linetools.abund.elements import ELEMENTS

ele = ELEMENTS['C']

ele.eleconfig_dict

{(1, 's'): 2, (2, 'p'): 2, (2, 's'): 2}

LineList Class

Overview

This class organizes information about atomic and molecular transition
lines (e.g. HI Lya, CIV 1548, Hydrogen Balmer series) observed
in astrophysical environments.

The following lists are currently avaliable:

	‘ISM’ : “All” ISM lines (can be overwhelming!)

	‘Strong’ : Strong ISM lines (most common absorption line transitions observed)

	‘HI’ : HI Lyman series

	‘H2’ : H2 (Lyman-Werner)

	‘CO’ : CO UV band-heads

	‘EUV’ : Extreme UV lines

	‘Galaxy’ : Lines typically identified in galaxy spectra

	‘AGN’: Lines tipically identified in AGN spectra

Instantiation

The LineList Class may be instantiated using one of the keys in the
list above:

from linetools.lists.linelist import LineList
hi = LineList('HI')
#
euv = LineList('EUV')

hi, for example, contains only HI Lyman series transitions
(e.g. HI Lya), and euv contains both HI Lyman series and extreme
UV metal transitions (e.g. HI Lyb, NeVIII, MgX).

Accessing single transitions

We can now easily access atomic information regarding individual
transitions either by the rest-frame wavelength:

wrest = 1215.67 * u.AA # HI Lya
hi[wrest]

or by the name convention within linetools, which in the case of HI
Lya is HI 1215:

name = 'HI 1215' # We adopt the convention of *not* rounding in the name
hi[name]

Both cases will provide the following dictionary:

{'A': <Quantity 626500000.0 1 / s>, # Einstein coefficient
'Am': 0, # Mass number (often written as "A"; only used for D)
'Ej': <Quantity 0.0 1 / cm>, # Energy of lower level (relative to ground state)
'Ek': <Quantity 2259.163 1 / cm>, # Energy of upper level (relative to ground state)
'Ex': <Quantity 0.0 1 / cm>, # Excitation energy (cm^-1)
'Jj': 0.0, # Tot ang mom (z projection) of lower state (or rotation level)
'Jk': 0.0, # Tot ang mom (z projection) of upper state (or rotation level)
'Ref': 'Morton2003', # References
'Z': 1, # Atomic number (for atoms)
'col0': masked, # (Reserved)
'col6': masked, # (Reserved)
'el': 0, # Electronic transition (2=Lyman (B-X), 3=Werner (C-X))
'f': 0.41639999999999999, # Oscillator strength
'gamma': <Quantity 626500000.0 1 / s>,# Sum of A
'gj': 2, # Lower statistical weight (2J+1)
'gk': 6, # Upper statistical weight (2J+1)
'group': 1, # Flag for grouping
'ion': 1, # Ionic state (1=Neutral)
'mol': '', # Molecular name (H2, HD, CO, C13O)
'name': 'HI 1215', # Name
'nj': 0, # Orbital level of lower state (or vibrational level)
'nk': 0, # Orbital level of upper state (or vibrational level)
'wrest': <Quantity 1215.67 Angstrom>} # Rest Wavelength (Quantity)

which summarizes the most important atomic information of HI Lya
transition, including the reference where these values come from
(i.e., Morton2003). One can therefore access any of these by
calling its dictionary keywords:

hi['HI 1215']['wrest']
<Quantity 1215.67 Angstrom>

is the rest-frame wavelength of the HI Lya transition. Similarly,:

euv['NeVIII 780']['f']
0.050500001758337021

is the oscillator strength of the NeVIII 780 transition.

Methods

subset_lines()

This method provides a way to define a subset of lines drawn from the
original` LineList` object. Consider that for some reason you may want
only HI Lya and Lyb in your LineList, then you can achieve this by:

hi = LineList('HI')
hi = hi.subset_lines(['HI 1215', 'HI 1025'])

Which has only those two transitions loaded.

You may also want to use rest-frame wavelength to define a subset, for
instance:

ism = LineList('ISM')
lines = [2796.3543, 2803.5315, 1548.195, 1550.77] * u.AA
ism = ism.subset_lines(lines)
print(ism)
<LineList: ISM; 4 transitions>

selects only those four transitions of MgII and CIV. In order to
avoid loading the LineList('ISM') again, you can use the keyword
reset_data in subset_lines() to make another arbitrarily different
subset of lines from the original LineList:

lines = ['HI 1215', 'HI 1025']
ism = ism.subset_lines(lines, reset_data=True)
print(ism)
<LineList: ISM; 2 transitions>

which now has only HI Lya and Lyb.

Finally, if you want the transitions to be sorted by rest-frame
wavelength you can use the optional keyword sort:

lines = [2796.3543, 2803.5315, 1548.195, 1550.77] * u.AA
ism = ism.subset_lines(lines, reset_data=True, sort=True)
ism._data['wrest']
<Quantity [1548.195 , 1550.77 , 2796.3543, 2803.5315] Angstrom>

set_lines()

Another way to reset the LineList to its original form is by using
set_lines(). Following the previous example, we have a ism Linelist
with only 4 transitions:

print(ism._data['name'])
 name

CIV 1548
CIV 1550
MgII 2796
MgII 2803

print(ism)
<LineList: ISM; 4 transitions>

ism.set_lines()
print(ism)
<LineList: ISM; 412 transitions>

Give us the original ism LineList with 412 unique transitions.

You may also want to use rest-frame wavelength to define a subset, for
instance:

ism = LineList('ISM')
sub_lines = [2796.3543, 2803.5315, 1548.195, 1550.77] * u.AA
civ_mgii = ism.subset(sub_lines)

all_transitions()

Sometimes it may be useful to know all the transitions associated
to a given ion species. This can be achieved by the
all_transitions() method:

ism = LineList('ISM')
mgii = ism.all_transitions('MgII')

Which gives us the information of all the 6 transitions of MgII:

print(mgii)
 A el nj nk group name Ek ... Jk Z gk gj gamma col0 col6
 1 / s 1 / cm ... 1 / s
----------- --- --- --- ----- --------- --------- ... --- --- --- --- ----------- ---- ----
 2350000.0 0 0 0 1 MgII 1025 97468.92 ... 0.0 12 4 2 2350000.0 -- --
 2480000.0 0 0 0 1 MgII 1026 97455.12 ... 0.0 12 2 2 2480000.0 -- --
 1370000.0 0 0 0 1 MgII 1239 80650.02 ... 0.0 12 4 2 1370000.0 -- --
 1540000.0 0 0 0 1 MgII 1240 80619.5 ... 0.0 12 2 2 1540000.0 -- --
262500000.0 0 0 0 1 MgII 2796 35760.848 ... 0.0 12 4 2 262500000.0 -- --
259500000.0 0 0 0 1 MgII 2803 35669.298 ... 0.0 12 2 2 259500000.0 -- --

In this case mgii is a Table because
more than 1 transition was found. In cases were only 1 transition
exists, the output of all_transitions() is a dictionary
with the same keywords as the columns of ism._data QTable:

ciii = ism.all_transitions('CIII')
type(ciii)
dict
print(ciii)
{'A': <Quantity 1760000000.0 1 / s>,
'Am': 0,
'Ej': <Quantity 0.0 1 / cm>,
'Ek': <Quantity 2352.04 1 / cm>,
'Ex': <Quantity 0.0 1 / cm>,
'Jj': 0.0,
'Jk': 0.0,
'Ref': 'Morton2003',
'Z': 6,
'col0': masked,
'col6': masked,
'el': 0,
'f': 0.75700000000000001,
'gamma': <Quantity 1760000000.0 1 / s>,
'gj': 1,
'gk': 3,
'group': 1,
'ion': 3,
'mol': '',
'name': 'CIII 977',
'nj': 0,
'nk': 0,
'wrest': <Quantity 977.0201 Angstrom>}

Alternatively, we could call this method via tuple, e.g., (8,6),
where the first entry is the atomic number (of O) and the second is
the ionization state (VI)

ovi = ism.all_transitions((8,6))
print(ovi['name', 'wrest', 'f'])
 name wrest f
 Angstrom
-------- --------- ------
OVI 1031 1031.9261 0.1325
OVI 1037 1037.6167 0.0658

You can also use a rest-frame wavelength to identify the ion species
of interest:

wrest = 1260.4221 * u.AA
si2 = ism.all_transitions(wrest)
print(si2['name', 'wrest', 'f'])
 name wrest f
 Angstrom
--------- --------- ---------------
SiII 889 889.7228 0.0434000007808
SiII 989 989.8731 0.171
SiII 1020 1020.6989 0.0168
SiII 1190 1190.4158 0.292
SiII 1193 1193.2897 0.582
SiII 1260 1260.4221 1.18
SiII 1304 1304.3702 0.0863
SiII 1526 1526.707 0.127
SiII 1808 1808.0129 0.00208
SiII 2335 2335.123 4.25e-06

For the purposes of all_transitions, it does not matter which
transition of a given ion species you choose, it will still retrieve
the same answer, e.g.:

hi = ism.all_transitions('HI 1215')
hi = ism.all_transitions('HI 1025')
hi = ism.all_transitions(972.5367 * u.AA)
hi = ism.all_transitions('HI')

are all equivalent. Note that in the last example we only used the
root name of the transition (i.e. the string before the blank space,
'HI'), so no prior knowledge of the linetools naming convention is
needed.

strongest_transitions()

Sometimes it is useful to know the strongest transition for an ion in
the LineList within some wavelength range. strongest_transitions()
gives the strongest n_max transitions of a given ion
between a wavelength range, sorted by relative strength (defined as
the product of its rest-frame wavelength wrest and oscillator
strength f):

wvlims = [1000, 3000] * u.AA
line = 'SiII'
si2_strong = ism.strongest_transitions(line, wvlims, n_max=4)
print(si2_strong['name'])
 name

SiII 1260
SiII 1193
SiII 1190
SiII 1526

The syntax is the same as for all_transitions(). Note that you will
get the same result if you use line='SiII', line='SiII 1190',
line='SiII 889', line=889.7228*u.AA, or line=(8,6). By default n_max=3.
Depending on the wavelength range, however, the output may vary:

wvlims = [500, 1100] * u.AA
line = 'SiII 1260'
si2_strong = ism.strongest_transitions(line, wvlims, n_max=4)
print(si2_strong['name'])
 name

SiII 989
SiII 889
SiII 1020

Note that despite n_max=4 we have only retrieved the 3 transitions
satisfying the criteria of belonging to wvlims = [500, 1100] * u.AA.
Again, note that even though SiII 1260 is out of wvlims range, it
can still be used to identify that you are interested in the SiII ion
species.

If you would like to retrieve all the transitions in a given wvlims
regardless of its relative strength, you can set n_max=None.

Following the convention within LineList, if only 1 transition is
retrieved, the output of strongest_transitions() is a dictionary; if
more than 1 transition are retrieved the output is a QTable. If no
transition exist the output is None.

available_transitions()

Sometimes it may be useful to know what are the available
transition in a given wavelength range found in the LineList
regardless of the ion species. This is particularly the case when
someone is trying to identify unknown emission/absorption lines
in a spectrum. Let us then illustrate the use of this method
with an example. Imagine that you have an observed spectrum
covering the following wavelength range:

wvlims = [3500,5000] * u.AA

Let us now imagine that we are interested in a particular redshift, say
z=0.67. Then, we can do:

z = 0.67
transitions = ism.available_transitions(wvlims/(1+z), n_max_tuple=None, min_strength=0.)
print(len(transitions))
33

Will give the 33 transitions available that could correspond to having
z=0.67 in the form of a QTable. The output is sorted by strength of
the strongest available transition per ion species, and strength is defined
as log10(wrest * fosc * abundance), where abundance is that of the solar
composition given by Asplund2009. As optional keyword parameters one can
specify a minimum strength as min_strength, so transitions below this
value are omitted, e.g.:

transitions = ism.available_transitions(wvlims/(1+z), n_max_tuple=None, min_strength=10.5)
print(len(transitions))
3

Which correspond to MgI 2852, MgII 2796 and MgII 2803. Note than this
method does not correct for ionization state. Similarly, one can also specify
the maximum number of transitions per ion species
tuple using the optional keyword parameter n_max_tuple, e.g.:

transitions = ism.available_transitions(wvlims/(1+z), n_max_tuple=1, min_strength=0.)
print(transitions['name'])
 name

MgI 2852
MgII 2796
FeII 2382
FeII* 2396b
MnII 2576
VII 2683
...

Which for the case of MgII only retrieves 'MgII 2796'. Again, following the convention within
LineList, if only 1 transition is retrieved, the output of available_transitions()
is a dictionary; if more than 1 transition are retrieved the output is a QTable. If no
transition exist satisfying the criteria the output is None.

SpectralLine Class

Notebooks

Overview

This Class is designed to organize and analyze an spectral line,
either emission or absorption. This is an abstract base class,
i.e. one must instantiate one of its subclasses (e.g. AbsLine).

Sub Classes

The primary children of SpectralLine are
AbsLine Class and EmissionLine (to be implemented).
See their documentation for a description of instantiation
and additional attributes.

Attributes

The base attributes for the SpectralLine class are:

	Property

	Variable

	Type

	Description

	Limits

	limits

	LineLimits

	The redshift and limits of the line in redshift, velocity
(w/r to its redshift) and observed wavelength.

	RA, Dec

	attrib[‘coord’]

	Coord

	astropy.coordinate

	Velocity

	attrib[‘v’]

	Quantity

	line velocity relative to its redshift

	Velocity sigma

	attrib[‘sig_v’]

	Quantity

	1 sigma uncertainty in the velocity

	Equivalent Width

	attrib[‘EW’]

	Quantity

	Equivalent width

	EW sigma

	attrib[‘sig_EW’]

	Quantity

	1 sigma uncertainty in EW

	EW flag

	attrib[‘flag_EW’]

	int

	Equivalent width flag

Note that redshift is sufficiently important that it is contained
within its own object. It is also accessible as a property, e.g.:

z = sline.z

Analysis

It is common that one wishes to associate a line with a spectrum
to perform a range of analyses.
This is accomplished through:

spline.analy['spec'] = sp

where sp is an XSpectrum1D Class object.

Methods

cut_spec

Provide a spectrum has been associated to the line (see Analysis):
then this method returns the portion of the spectrum surrounding
the line. The limits are specified in the LineLimits class held
in the attribute limits,
usually either with observed wavelengths or velocities relative
to the line’s redshift. The code returns the flux, error array,
and a dict containing the wavelength and velocity arrays.

spline.limits.set([-300., 300.]*u.km/u.s) # vlim
fx, sig, wv_dict = spline.cut_spec()

ismatch

Check whether two Lines are equal rest wavelength (to 1e-6 AA),
whether they have common RA/DEC to 0.1” (if provided),
and whether they are from the same ion:

print specline.ismatch(another_line)

measure_ew

Measure the observed Equivalent width for a SpectralLine.
Following absorption-line convention, absorption will
have a positive value and emission will have a negative value.

To perform the calculation, the line must be associated to
a spectrum (see Analysis above) and the LineLimits of the line
must have previously been specified.

When executed, the EW and sig_EW attibutes are filled:

specline.measure_ew()
print(specline.attrib['EW'])

measure_kin

Measure kinematic characteristics of an AbsLine.
To perform the calculation, the line must be associated to
a spectrum (see Analysis) and vlim must
be specified. When executed, the ‘kin’ attribute is filled
with a dict of measurements. Default set of measurements
are the v90, fedg, and fmm statistics of Prochaska & Wolfe 1997:

specline.measure_kin()

measure_restew

Measure the rest-frame Equivalent width of a SpectralLine.
See measure_ew for other details.

to_dict

Convert the Class to a JSON-friendly dict that might
be easily written to the disk, e.g.:

adict = specline.to_dict()
with io.open(outfil, 'w', encoding='utf-8') as f:
 f.write(unicode(json.dumps(tdict, sort_keys=True,
 indent=4, separators=(',', ': '))))

Utilities

There are several utilites related to spectral lines.
These are located in the line_utils module.

parse_speclines

Given a list of SpectralLines and desired property (key),
this method returns a list or array of the values.:

from linetools import line_utils
array_of_values = line_utils.parse_speclines(list_of_speclines, mk_array=True)

transtable_from_speclines

Given a list of SpectralLines, this method returns a Table
of a subset of the properties (e.g. wavelength, name, EW).:

trans_tbl = line_utils.transtable_from_speclines(list_of_speclines)

XSpectrum1D Class

Overview

~linetools.spectra.xspectrum1d.XSpectrum1D contains and
manipulates 1-d spectra, each of
which usually consists of a wavelength, flux and flux uncertainty
array. For absorption-line analysis, it also often contains a
continuum array.

The data are held in a masked numpy array which
may contain multiple spectra.
By default pixels on the edges of the
spectrum with an input error array having values <=0 are masked
at instantiation. It is important to appreciate this masking.
It does mean that you will not view, print, analyze, etc. pixels
that have been masked.

Attributes

The main attributes of XSpectrum1D are wavelength, flux and
sig. Let’s begin by creating a spectrum using the
~linetools.spectra.xspectrum1d.XSpectrum1D.from_tuple method:

>>> from linetools.spectra.xspectrum1d import XSpectrum1D
>>> import numpy as np
>>> wa = np.arange(3000, 7000.1, 0.5)
>>> fl = np.ones_like(wa)
>>> sig = np.ones_like(fl) * 0.1
>>> sp = XSpectrum1D.from_tuple((wa, fl, sig), verbose=False)
>>> sp.wavelength
<Quantity [3000. , 3000.5, 3001. ,..., 6999. , 6999.5, 7000.] Angstrom>
>>> sp.flux
<Quantity [1., 1., 1.,..., 1., 1., 1.]>
>>> sp.sig
<Quantity [1., 1., 1.,..., 1., 1., 1.]>

Note that all three arrays have units. If you don’t
specify a unit when you create an new XSpectrum1D instance, Angstroms
are assumed for wavelength and dimensionless_unscaled
for flux. The 1-sigma uncertainty is always assumed to have the
same units as the flux. All of these are specified in the sp.units dict.

If one loads multiple 1D spectra (e.g. a brick of data from DESI
or a set of spectra from
specdb [https://github.com/specdb/specdb]),
the selected spectrum is given by the spec.select index.

All of the values are stored in the masked spec.data numpy array
with columns wave, flux, sig, and co (the latter is
for a continuum).

Init

Reading

Read spectra from a file using XSpectrum1D.from_file, which uses the same
syntax as ~linetools.spectra.io.readspec. See
below for a complete listing of permitted file formats.

The easiest way to create
a new spectrum from a set of data arrays for a single
spectrum is to use sp.from_tuple as shown above.
Here are a series of example calls to generate the class:

sp = XSpectrum1D.from_file('PH957_f.fits') # From a FITS file
sp = XSpectrum1D.from_file('q0002m422.txt.gz') # From an ASCII table
sp = xspec1.copy() # From an XSpectrum1D object
sp = XSpectrum1D.from_tuple((wa, fl, sig), verbose=False)

Masking

The guts of XSpectrum1D is a ndarray array named data
which contains the wave, flux, sig, etc. values. This
is a masked array which is convenient for many applications.
If you wish to view/analyze all pixels in your spectrum including
those with 0 or NAN sig values, then disable the mask when
creating the object (masking=’None’) or by using the unnmask() method:

sp = XSpectrum1D.from_tuple((wa, fl, sig), masking='none')
sp = XSpectrum1D.from_file('PH957_f.fits')
sp.unmask()

Methods

Writing

There are a number of methods to write a file, e.g.
sp.write_to_fits. FITS files are preferable because they are
generally faster to read and write, require less space, and
are generally easier for other software to read.
Another option is an HDF5 file which better preserves the
data format of XSpectrum1D. Here are some examples:

sp.write_to_fits('QSO.fits') # Standard FITS file
sp.write('QSO.fits') # Same
sp.write('QSO.fits', FITS_TABLE=True) # Binary FITS table
sp.write_to_hdf5('QSO.hdf5') # HDF5 file
sp.write('QSO.hdf5') # Same
sp.write_to_ascii('QSO.ascii') # ASCII (heaven forbid)
sp.write('QSO.ascii') # Same

One can collate a list of XSpectrum1D objects into one with collate:

sp1 = XSpectrum1D.from_file('PH957_f.fits')
sp2 = XSpectrum1D.from_file('q0002m422.txt.gz')
sp = linetools.spectra.utils.collate([sp1,sp2])

Plotting

sp.plot() plots the spectrum, which you can then navigate around
using the same keys as ~lt_xspec (as well as the usual matplotlib
navigation tools).
Note: if you are using MacOSX then you will
probably need to change your backend from macosx to TkAgg
in the matplotlibrc file.

Rebinning

~linetools.spectra.xspectrum1d.XSpectrum1D.rebin rebins the spectrum
to an arbitrary input wavelength array. Flux is conserved. If
do_sig=True, the error array is rebinned as well and a crude attempt
is made to conserve S/N. Generally, neighboring pixels will be
correlated:

newspec = sp.rebin(new_wv, do_sig=True)

If the XSpectrum1D object containts multiple spectra, you can rebin
all of them to the new wavelength array as well:

newspec = sp.rebin(new_wv, do_sig=True, all=True)

Continuum fitting

~linetools.spectra.xspectrum1d.XSpectrum1D.fit_continuum enables you
to interactively fit a continuum to the spectrum. Currently it’s
optimised to estimate the continuum for high-resolution quasar
spectra, but it should be applicable to any spectrum with a slowly
varying continuum level and narrow absorption features. Once a
continuum has been fitted, it can be accessed using the co
attribute. The spectrum can also be normalised (i.e the flux values
returned by spec.flux are divided by the continuum) with the
~linetools.spectra.xspectrum1d.XSpectrum1D.normalize
method. This also sets spec.normed to True.

Finally, you can apply small variations to the continuum
anchor points with
~linetools.spectra.xspectrum1d.XSpectrum1D.perturb_continuum to see
how changes in the continuum level affect your analysis.

Smoothing

There are several algorithms included that smooth the
input spectrum and return a new XSpectrum1D. These are
~linetools.spectra.xspectrum1d.XSpectrum1D.box_smooth,
~linetools.spectra.xspectrum1d.XSpectrum1D.gauss_smooth,
and
~linetools.spectra.xspectrum1d.XSpectrum1D.ivar_smooth.

Other methods

You can join one XSpectrum1D instance with another overlapping
spectrum using ~linetools.spectra.xspectrum1d.XSpectrum1D.splice.
~linetools.spectra.xspectrum1d.XSpectrum1D.pix_minmax finds the
pixel indices corresponding to a wavelength or velocity range, and
~linetools.spectra.xspectrum1d.XSpectrum1D.add_noise adds noise to
the spectrum. We have also implemented a method that estimates a local
average signal-to-noise ratio at a given observed wavelength
(~linetools.spectra.xspectrum1d.XSpectrum1D.get_local_s2n), which is capable
of masking out pixels that are below a flux threshold (useful for excluding
strong absorption features from the calculation). For a complete list of
all the available methods, see the API: ~linetools.spectra.xspectrum1d.XSpectrum1D.

Multi-spec methods

See Multi XSpectrum1D for more.

File Formats Read

Below is a table of the types of spectra files that can be read by
~linetools.spectra.io.readspec. If your file cannot be read, please
open an issue on the linetools issue tracker [http://github.com/linetools/linetools/issues].

	Description

	Instruments

	simple 1D FITS files

	ESI, HIRES, etc.

	binary FITS table from LowRedux

	LRIS,Kast,etc.

	multi-extension 1D FITS files from LowRedux

	LRIS,Kast,etc.

	binary FITS tables from many other sources

	COS, SDSS, etc.

	multi-extension binary FITS tables from PYPIT

	LRIS,Kast,etc.

	brick files (2D images: flux, ivar; 1D image: wavelength)

	DESI

	UVES_popler [http://astronomy.swin.edu.au/~mmurphy/UVES_popler/] output files

	UVES

GUIs

Notebooks

	XSpecGui

	XAbsSysGui

Overview

There are several GUIs included with linetools, primarily for
simple spectral inspection and analysis.

We caution that it is difficult (essentially impossible) to
generate unit tests for these GUIs. As such, they are far
from bug free and may crash unexpectedly. Buyer beware!

Continuum fitting

This enables interactive fitting of the unabsorbed continuum for a
spectrum. A series of ‘knot’ positions are estimated, and these are
then joined with a spline to produce a continuum. Spline points can be
interactively added, deleted or moved to improve the continuum. See
the notebook for an example.

XSpecGUI

This enables visual inspection of a spectrum. Simple analysis
(e.g. equivalent width measurements) may also be performed. See the
notebook for details.

XAbsSysGui

This shows a velocity (stack) plot of the absorption lines from
an input absorption line system. The user can then modify the
velocity limits that would be used for subsequent analysis, flag
bad lines, blends, set limits, etc. The modified absoprtion system
is then written to the hard-drive as a JSON file.

xspec Documentation

Download this notebook.

This ipython Notebook is intended to provide documentation for the
linetools GUI named XSpecGUI.

Enjoy and feel free to suggest edits/additions, etc.

Here is a screenshot of the XSpecGUI in action:

from IPython.display import Image
Image(filename="images/xspec_example.png")

[image: _images/xspecgui_1_0.png]
The example spectrum file used below is part of the linetools package.

import imp
lt_path = imp.find_module('linetools')[1]
spec_fil = lt_path+'/spectra/tests/files/PH957_f.fits'

Before Launching the GUI

If you are a Mac user, we highly recommend that you set your
matplotlib backend from MacOSX to TkAgg (or another option, see
backends [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend]).

Launching the GUI

From the command line (recommended)

We recommend you use the script provided with linetools.

Then it is as simple as:

> lt_xspec filename

Here are the current command-line options:

> lt_xspec -h
usage: lt_xspec [-h] [--zsys ZSYS] [--norm] [--exten EXTEN]
 [--wave_tag WAVE_TAG] [--flux_tag FLUX_TAG]
 [--sig_tag SIG_TAG] [--var_tag VAR_TAG] [--ivar_tag IVAR_TAG]
 file

Parse for XSpec

positional arguments:
 file Spectral file

optional arguments:
 -h, --help show this help message and exit
 --zsys ZSYS System Redshift
 --norm Show spectrum continuum normalized (if continuum is
 provided)
 --exten EXTEN FITS extension
 --wave_tag WAVE_TAG Tag for wave in Table
 --flux_tag FLUX_TAG Tag for flux in Table
 --sig_tag SIG_TAG Tag for sig in Table
 --var_tag VAR_TAG Tag for var in Table
 --ivar_tag IVAR_TAG Tag for ivar in Table

From within ipython or equivalent

from linetools.guis import xspecgui as ltxsg

import imp; imp.reload(ltxsg)
ltxsg.main(spec_fil)

Navigating - These key strokes help you explore the spectrum (be sure to click in the spectrum panel first!)

Setting the window edges (mouse+keystroke)

	l – Set left edge of window

	r – Set right edge of window

	t – Set top edge of window

	b – Set bottom edge of window

	Z – Set bottom edge to 0.

	W – View full spectrum

	s,s – Set a zoom-in window at 2 mouse positions

Zoom in/out Wavelength

	i – Zoom in on cursor

	I – Zoom in extra fast

	o – Zoom out

	O – Zoom out extra fast

Best estimate Flux limits

	y – Make a guess for the flux plotting limits

Zoom out Flux

	Y – Zoom out

Pan

	[– Pan left

	{ – Pan left extra

] – Pan right

	} – Pan right extra

Overlaying Line Lists

You can overlay a series of vertical lines at standard spectral lines at
any given redshift.

Setting the Line List

You must choose a line-list by clicking one.

Setting the redshift

	Type one in

	RMB on a spectral feature (Ctrl-click on Emulated 3-button on Macs)

	Choose the rest wavelength

Marking Doublets

	C – CIV

	M – MgII

	X – OVI

	4 – SiIV

	8 – NeVIII

	B – Lyb/Lya

Velocity plot (Coming Soon)

Once a line list and redshift are set, type ‘v’ to launch a Velocity
Plot GUI.

Simple Analysis

Gaussian Fit

You can fit a Gaussian to any single feature in the spectrum as follows:
1. Click “G” at the continuum at one edge of the feature 1. And then
another “G” at the other edge (also at the continuum) 1. A simple
Gaussian is fit and reported.

Equivalent Width

You can measure the rest EW of a spectral feature as follows: 1. Click
“E” at the continuum at one edge of the feature 1. And then another “E”
at the other edge (also at the continuum) 1. A simple boxcar integration
is performed and reported.

Apparent Column Density

You can measure the apparent column via AODM as follows: 1. Click “N” at
the continuum at one edge of the feature 1. And then another “EN” at the
other edge (also at the continuum) 1. A simple AODM integration is
performed and reported.

Ly\(\alpha\) Lines

	“D” - Plot a DLA with \(N_{\rm HI} = 10^{20.3} \rm cm^{-2}\)

	“R” - Plot a SLLS with \(N_{\rm HI} = 10^{19} \rm cm^{-2}\)

xabssys Documentation

This ipython Notebook is intended to provide documentation for the
linetools GUI named XAbsSysGui.

Enjoy and feel free to suggest edits/additions, etc.

Before Launching the GUI

If you are a Mac user, we highly recommend that you set your
matplotlib backend from MacOSX to TkAgg (or another option, see
backends [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend]).

Launching the GUI

From the command line (recommended)

We recommend you use the script provided with linetools.

Then it is as simple as:

> lt_xabssys spec_file abssys_file

The abssys_file is expected to be a JSON file that contains
an AbsSystem (likely written with the write_json method).

Here are the current command-line options:

> lt_xspec -h
usage: lt_xabssys [-h] [-outfile OUTFILE] [-llist LLIST] [--un_norm]
 spec_file abssys_file

Parse for XAbsSys

positional arguments:
 spec_file Spectral file
 abssys_file AbsSys file (JSON)

optional arguments:
 -h, --help show this help message and exit
 -outfile OUTFILE Output filename
 -llist LLIST Name of LineList
 --un_norm Spectrum is NOT normalized

From within ipython or equivalent

Not yet implemented

Navigating in the Main Window- These key strokes help you explore the spectrum (be sure to click in the spectrum panel first!)

Setting the window edges (mouse+keystroke)

	l – Set left edge of window

	r – Set right edge of window

	t – Set top edge of window

	b – Set bottom edge of window

Zoom in/out Wavelength

	i – Zoom in on cursor

	I – Zoom in extra fast

	o – Zoom out

	O – Zoom out extra fast

Zoom out Flux

	Y – Zoom out

Pan

	[– Pan left

	{ – Pan left extra

] – Pan right

	} – Pan right extra

Adjusting Rows/Columns

	= – Move to next page of lines

	
	– Move to previous page of lines

	C – Add a column

	c – Remove a column

	K – Add a row

	k – Remove a row

Modifying Absorption lines

Limits and Blends

linetool Scripts

There are a number of scripts, many of which are GUIs,
provided with linetools. As regards the GUIs we warn
again that Mac users will need to set their matplotlib to
something other than MacOSX. See
backends [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend].

lt_xspec

	Example Notebook

Launch a QT Gui to examine an input spectrum.

For example:

lt_xspec filename.fits
lt_xspec filename.fits#1# -- Specifies extension 1 for a multi-extension FITS file of binary tables

You can explore the data, perform simple analysis (e.g. EW
measurements) and more. See the Notebook for more.

Here is the full usage:

usage: lt_xspec [-h] [-z ZSYS] [--norm] [--air] [--exten EXTEN]
 [--splice SPLICE] [--scale SCALE]
 file

Parser for lt_xspec v1.2; Note: Extra arguments are passed to read_spec (e.g.
--flux_tag=FX)

positional arguments:
 file Spectral file; specify extension by appending #exten#

optional arguments:
 -h, --help show this help message and exit
 -z ZSYS, --zsys ZSYS System Redshift
 --norm Show spectrum continuum normalized (if continuum is
 provided)
 --air Convert input spectrum wavelengths from air to vacuum
 --exten EXTEN FITS extension
 --splice SPLICE Splice with the input file; extension convention
 applies
 --scale SCALE Scale factor for GUI size [1. is default]

lt_plot

Plot one or more spectra. This has fewer features than lt_xspec above,
but is faster.

For example:

lt_plot filename1 filename2

A plot of the spectrum in filename1 appears, and you can navigate
around it using the same commands as in lt_xspec. Move to the next or
previous spectrum with the right or left arrow key.

To list all the command line options available, use:

lt_plot -h

lt_absline

This plots a single absorption line, given a transition rest
wavelength (Angstroms) or name (e.g. CIV1548),
log10 column density, and Doppler parameter
(km/s).

For example:

lt_absline 1215.6701 14.0 30
lt_absline HI1215 14.0 30

plots a Hydrogen Ly-a line with column density of 1014 cm-2 and b=30 km/s. A plot will appear and the line info and EW
as well, i.e.

[AbsLine: HI 1215, wrest=1215.6700 Angstrom]
EW = 0.268851 Angstrom

Try:

lt_absline -h

for the full set of options.

lt_radec

Input coordinates in one format and print them out
in several formats:

lt_radec 152.25900,7.22885
lt_radec J100902.16+071343.86
lt_radec 10:09:02.16,+07:13:43.8

lt_line

Print the atomic data for an input ion, transition or for an
entire linelist.:

lt_line -h
lt_line HI
lt_line HI -z 3.0
lt_line HI1215
lt_line 1215
lt_line --all

Here is the usage:

beast> lt_line -h
usage: lt_line [-h] [-a] [--llist LLIST] [-t TOLER] [-z REDSHIFT] [inp]

Print spectral line data of a line or lines.

positional arguments:
 inp Ion, transition name, or Rest wavelength (e.g. HI,
 HI1215 or 1215)

optional arguments:
 -h, --help show this help message and exit
 -a, --all Print all lines
 --llist LLIST Name of LineList: ISM, HI, H2, CO, etc.
 -t TOLER, --toler TOLER
 Matching tolerance (in Ang) on input wavelength
 -z REDSHIFT, --redshift REDSHIFT
 Matching tolerance (in Ang) on input wavelength

lt_solabnd

Print the solar abundances by number relative to Hydrogen on the
traditional log scale of 12, e.g. e(Fe) = 7.55:

lt_solabnd Fe
lt_solabnd -a
lt_solabnd -a --sortZ

Here is the usage:

beast> lt_solabnd -h
usage: lt_solabnd [-h] [-a] [--sortZ] [inp]

Print Solar abundance data for an element or all elements.

positional arguments:
 inp Elm (e.g. H, Fe)

optional arguments:
 -h, --help show this help message and exit
 -a, --all Print all values
 --sortZ Sort on Atomic Number

lt_continuumfit

Launch the GUI to continuum fit a spectrum.
If a redshift is supplied by zsys, then the
script assumes this is a QSO.:

lt_continuumfit input_file output_filename --redshift 0.867

Here is the current usage message:

usage: lt_continuumfit [-h] [--redshift REDSHIFT] [--wchunk WCHUNK]
 file outfil

GUI to fit a continuum to a spectrum

positional arguments:
 file Input spectral file (FITS, ASCII, etc.)
 outfil Output, normalized spectrum filename; FITS [can be the
 same]

optional arguments:
 -h, --help show this help message and exit
 --redshift REDSHIFT Redshift of the Source
 --wchunk WCHUNK Width of a 'chunk' (Ang)

xspec Documentation

Download this notebook.

This ipython Notebook is intended to provide documentation for the
linetools GUI named XSpecGUI.

Enjoy and feel free to suggest edits/additions, etc.

Here is a screenshot of the XSpecGUI in action:

from IPython.display import Image
Image(filename="images/xspec_example.png")

[image: _images/xspecgui_1_0.png]
The example spectrum file used below is part of the linetools package.

import imp
lt_path = imp.find_module('linetools')[1]
spec_fil = lt_path+'/spectra/tests/files/PH957_f.fits'

Before Launching the GUI

If you are a Mac user, we highly recommend that you set your
matplotlib backend from MacOSX to TkAgg (or another option, see
backends [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend]).

Launching the GUI

From the command line (recommended)

We recommend you use the script provided with linetools.

Then it is as simple as:

> lt_xspec filename

Here are the current command-line options:

> lt_xspec -h
usage: lt_xspec [-h] [--zsys ZSYS] [--norm] [--exten EXTEN]
 [--wave_tag WAVE_TAG] [--flux_tag FLUX_TAG]
 [--sig_tag SIG_TAG] [--var_tag VAR_TAG] [--ivar_tag IVAR_TAG]
 file

Parse for XSpec

positional arguments:
 file Spectral file

optional arguments:
 -h, --help show this help message and exit
 --zsys ZSYS System Redshift
 --norm Show spectrum continuum normalized (if continuum is
 provided)
 --exten EXTEN FITS extension
 --wave_tag WAVE_TAG Tag for wave in Table
 --flux_tag FLUX_TAG Tag for flux in Table
 --sig_tag SIG_TAG Tag for sig in Table
 --var_tag VAR_TAG Tag for var in Table
 --ivar_tag IVAR_TAG Tag for ivar in Table

From within ipython or equivalent

from linetools.guis import xspecgui as ltxsg

import imp; imp.reload(ltxsg)
ltxsg.main(spec_fil)

Navigating - These key strokes help you explore the spectrum (be sure to click in the spectrum panel first!)

Setting the window edges (mouse+keystroke)

	l – Set left edge of window

	r – Set right edge of window

	t – Set top edge of window

	b – Set bottom edge of window

	Z – Set bottom edge to 0.

	W – View full spectrum

	s,s – Set a zoom-in window at 2 mouse positions

Zoom in/out Wavelength

	i – Zoom in on cursor

	I – Zoom in extra fast

	o – Zoom out

	O – Zoom out extra fast

Best estimate Flux limits

	y – Make a guess for the flux plotting limits

Zoom out Flux

	Y – Zoom out

Pan

	[– Pan left

	{ – Pan left extra

] – Pan right

	} – Pan right extra

Overlaying Line Lists

You can overlay a series of vertical lines at standard spectral lines at
any given redshift.

Setting the Line List

You must choose a line-list by clicking one.

Setting the redshift

	Type one in

	RMB on a spectral feature (Ctrl-click on Emulated 3-button on Macs)

	Choose the rest wavelength

Marking Doublets

	C – CIV

	M – MgII

	X – OVI

	4 – SiIV

	8 – NeVIII

	B – Lyb/Lya

Velocity plot (Coming Soon)

Once a line list and redshift are set, type ‘v’ to launch a Velocity
Plot GUI.

Simple Analysis

Gaussian Fit

You can fit a Gaussian to any single feature in the spectrum as follows:
1. Click “G” at the continuum at one edge of the feature 1. And then
another “G” at the other edge (also at the continuum) 1. A simple
Gaussian is fit and reported.

Equivalent Width

You can measure the rest EW of a spectral feature as follows: 1. Click
“E” at the continuum at one edge of the feature 1. And then another “E”
at the other edge (also at the continuum) 1. A simple boxcar integration
is performed and reported.

Apparent Column Density

You can measure the apparent column via AODM as follows: 1. Click “N” at
the continuum at one edge of the feature 1. And then another “EN” at the
other edge (also at the continuum) 1. A simple AODM integration is
performed and reported.

Ly\(\alpha\) Lines

	“D” - Plot a DLA with \(N_{\rm HI} = 10^{20.3} \rm cm^{-2}\)

	“R” - Plot a SLLS with \(N_{\rm HI} = 10^{19} \rm cm^{-2}\)

The linetools API

Index

 A
 | E
 | G
 | L
 | R
 | S
 | X

A

 	
 	AbsComponent

 	AbsLine

 	
 	AbsSightline

 	AbsSystem

E

 	
 	EmLine

G

 	
 	GUIs

L

 	
 	LineList

R

 	
 	RelAbund

S

 	
 	SolarAbund

 	
 	SpectralLine

X

 	
 	xspec_multi

 	
 	XSpectrum1D

Examples for AbsLine class (v1.2)

Download this notebook.

suppress warnings for these examples
import warnings
warnings.filterwarnings('ignore')

import
import astropy.units as u
from linetools.spectralline import AbsLine, SpectralLine
from linetools import spectralline as ltsp
from linetools.spectra.xspectrum1d import XSpectrum1D

Generate a line

abslin = AbsLine(1548.195*u.AA)
abslin

linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/morton03_table2.fits.gz
linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/morton00_table2.fits.gz
linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/verner96_tab1.fits.gz
linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/verner94_tab6.fits
linetools.lists.parse: Reading linelist ---
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/data/lines/EUV_lines.ascii
read_sets: Using set file --
 /Users/ncrighton/Code/Repo/linetools/build/lib.macosx-10.5-x86_64-3.4/linetools/lists/sets/llist_v1.0.ascii

<AbsLine: CIV 1548, wrest=1548.1950 Angstrom>

Data

abslin.data

{'A': <Quantity 0.0 1 / s>,
 'Am': 0,
 'Ej': <Quantity 0.0 1 / cm>,
 'Ek': <Quantity 0.0 1 / cm>,
 'Ex': <Quantity 0.0 1 / cm>,
 'Jj': 0.0,
 'Jk': 0.0,
 'Ref': 'Verner1994',
 'Z': 6,
 'col0': masked,
 'col7': masked,
 'el': 0,
 'f': 0.18999999761581421,
 'gamma': <Quantity 0.0 1 / s>,
 'gj': 2,
 'gk': 4,
 'group': 1,
 'ion': 4,
 'mol': '',
 'name': 'CIV 1548',
 'nj': 0,
 'nk': 0,
 'wrest': <Quantity 1548.195 Angstrom>}

As dict

abslin = AbsLine(1548.195*u.AA)
tmp = abslin.to_dict()
tmp

{'analy': {'datafile': '',
 'do_analysis': 1,
 'flag_kin': 0,
 'flg_eye': 0,
 'flg_limit': 0,
 'name': 'CIV 1548',
 'vlim': {'unit': 'km / s', 'value': [0.0, 0.0]},
 'wvlim': {'unit': 'Angstrom', 'value': [0.0, 0.0]}},
 'attrib': {'DEC': 0.0,
 'EW': {'unit': 'Angstrom', 'value': 0.0},
 'N': {'unit': '1 / cm2', 'value': 0.0},
 'RA': 0.0,
 'b': {'unit': 'km / s', 'value': 0.0},
 'flag_EW': 0,
 'flag_N': 0,
 'sig_EW': {'unit': 'Angstrom', 'value': 0.0},
 'sig_N': {'unit': '1 / cm2', 'value': 0.0},
 'sig_b': {'unit': 'km / s', 'value': 0.0},
 'sig_v': {'unit': 'km / s', 'value': 0.0},
 'sig_z': 0.0,
 'v': {'unit': 'km / s', 'value': 0.0},
 'z': 0.0},
 'data': {'A': {'unit': '1 / s', 'value': 0.0},
 'Am': 0,
 'Ej': {'unit': '1 / cm', 'value': 0.0},
 'Ek': {'unit': '1 / cm', 'value': 0.0},
 'Ex': {'unit': '1 / cm', 'value': 0.0},
 'Jj': 0.0,
 'Jk': 0.0,
 'Ref': 'Verner1994',
 'Z': 6,
 'el': 0,
 'f': 0.18999999761581421,
 'gamma': {'unit': '1 / s', 'value': 0.0},
 'gj': 2,
 'gk': 4,
 'group': 1,
 'ion': 4,
 'mol': '',
 'name': 'CIV 1548',
 'nj': 0,
 'nk': 0,
 'wrest': {'unit': 'Angstrom', 'value': 1548.195}},
 'ltype': 'Abs',
 'name': 'CIV 1548',
 'wrest': {'unit': 'Angstrom', 'value': 1548.195}}

From dict

tmp2 = SpectralLine.from_dict(tmp)
tmp2

<AbsLine: CIV 1548, wrest=1548.1950 Angstrom>

Measure an EW

Set spectrum
abslin.analy['spec'] = XSpectrum1D.from_file('../../linetools/spectra/tests/files/UM184_nF.fits')

Set analysis range
abslin.analy['wvlim'] = [6080.78, 6087.82]*u.AA

Measure
abslin.measure_ew() # Observer frame
print('EW = {:g} with error {:g}'.format(abslin.attrib['EW'],abslin.attrib['sig_EW']))

EW = 0.993502 Angstrom with error 0.0527114 Angstrom

Measure AODM

abslin.analy['wvlim'] = [0.,0.]*u.AA # Zero out for test
#
abslin.analy['spec'] = lsio.readspec('../../linetools/spectra/tests/files/UM184_nF.fits')
abslin.analy['vlim'] = (-150., 150.)*u.km/u.s
abslin.attrib['z'] = 2.92929

abslin.measure_aodm()
N, sigN, flgN = [abslin.attrib[key] for key in ['N','sig_N','flag_N']]
print('logN = {:g}, siglogN = {:g}'.format(abslin.attrib['logN'], abslin.attrib['sig_logN']))

logN = 13.9051, siglogN = 0.0207026

Interactive continuum fitting

Download this notebook.

suppress warnings for these examples
import warnings
warnings.filterwarnings('ignore')

import imp
prefix = imp.find_module('linetools')[1] + '/spectra/tests/files/'
import linetools.spectra.xspectrum1d as lsx
spec = lsx.XSpectrum1D.from_file(prefix + 'q0002m422.txt.gz')
keep the old continuum to compare later on
co_old = spec.co.copy()

%pylab

Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib

now fit the continuum interactively. We say we're fitting a QSO,
so it can make intelligent guesses about where to put the spline
points that define the continuum.
spec.fit_continuum(kind='QSO', redshift=2.76)

now you can interactively tweak these spline points, adding or
removing them as necessary. Once you're finished, press 'q' to
close the window.

knots file exists, use this? (y) n

i,o Zoom in/out x limits
y Zoom out y limits
Y Guess y limits
t,b Set y top/bottom limit
l,r Set left/right x limit
[,] Pan left/right
w Plot the whole spectrum

S,U Smooth/unsmooth spectrum

i,o Zoom in/out x limits
y Zoom out y limits
Y Guess y limits
t,b Set y top/bottom limit
l,r Set left/right x limit
[,] Pan left/right
w Plot the whole spectrum

S,U Smooth/unsmooth spectrum

a : add a new spline knot
A : add a new spline knot, and use a flux median to guess y position
+ : double the number of spline knots
_ : halve the number of spline knots
d : delete the nearest knot
m : move the nearest knot
M : move the nearest knot, and use a flux median to guess y position

q : quit

Updating continuum

the New continuum is now saved in spec.co, and the spline knots are in
spec.meta['contpoints']
#
Let's compare the old and new continuum
plt.figure()
wa = spec.dispersion.value
plt.plot(wa, co_old)
plt.plot(wa, spec.co)

[<matplotlib.lines.Line2D at 0x10c8df978>]

co_old2 = spec.co.copy()

we can also tweak a small section of the continuum without affecting the whole spectrum.
spec.fit_continuum(wlim=(5000, 5100))

knots file exists, use this? (y) n

i,o Zoom in/out x limits
y Zoom out y limits
Y Guess y limits
t,b Set y top/bottom limit
l,r Set left/right x limit
[,] Pan left/right
w Plot the whole spectrum

S,U Smooth/unsmooth spectrum

i,o Zoom in/out x limits
y Zoom out y limits
Y Guess y limits
t,b Set y top/bottom limit
l,r Set left/right x limit
[,] Pan left/right
w Plot the whole spectrum

S,U Smooth/unsmooth spectrum

a : add a new spline knot
A : add a new spline knot, and use a flux median to guess y position
+ : double the number of spline knots
_ : halve the number of spline knots
d : delete the nearest knot
m : move the nearest knot
M : move the nearest knot, and use a flux median to guess y position

q : quit

Updating continuum

check it works without a predefined continuum
spec = lsx.XSpectrum1D.from_file(prefix + 'q0002m422.txt.gz')
spec.co = None
spec.fit_continuum(kind='QSO', redshift=2.76)

knots file exists, use this? (y) n

i,o Zoom in/out x limits
y Zoom out y limits
Y Guess y limits
t,b Set y top/bottom limit
l,r Set left/right x limit
[,] Pan left/right
w Plot the whole spectrum

S,U Smooth/unsmooth spectrum

i,o Zoom in/out x limits
y Zoom out y limits
Y Guess y limits
t,b Set y top/bottom limit
l,r Set left/right x limit
[,] Pan left/right
w Plot the whole spectrum

S,U Smooth/unsmooth spectrum

a : add a new spline knot
A : add a new spline knot, and use a flux median to guess y position
+ : double the number of spline knots
_ : halve the number of spline knots
d : delete the nearest knot
m : move the nearest knot
M : move the nearest knot, and use a flux median to guess y position

q : quit

Updating continuum

AbsLine Class

Notebooks

	Simple Examples

Overview

This Class is a child of the abstract
SpectralLine Class Class. See that
documentation for the base methods.

AbsLine is designed to organize and analyze an absorption line.
In addition to the attributes defaulted to SpectralLine,
this class has:

	Property

	Variable

	Type

	Description

	Doppler param.

	attrib[‘b’]

	Quantity

	Doppler parameter

	b sigma

	attrib[‘sig_b’]

	Quantity

	1 sigma uncertainty in b

	Column density

	attrib[‘N’]

	Quantity

	Column density

	N sigma

	attrib[‘sig_N’]

	Quantity

	1 sigma uncertainty in N

	N flag

	attrib[‘flag_N’]

	int

	Column density flag

Instantiation

from_dict

Instantiate from a dict. The keys ltype (‘Abs’)
and trans are required.

fill_data

Attributes

See the Table above. logN and sig_logN are commonly used
as well.

Plots

Methods

get_Wr_from_N_b

It returns the rest-frame equivalent width for a given N and b. It uses the approximation given
by Draine 2011 book (eq. 9.27), which comes from atomic physics considerations.:

abslin1 = AbsLine('HI 1215')
N = [10**12.0, 10**12.1, 10**12.2, 10**14.0] / (u.cm*u.cm)
b = [20, 20, 20, 20] * u.km / u.s
Wr = abslin1.get_Wr_from_N_b(N, b)
print(Wr)
<Quantity [0.0053758 , 0.00674464, 0.00845469, 0.21149773] Angstrom>

get_Wr_from_N

It returns the approximated rest-frame equivalent width for
a given N. It uses the approximation given by Draine 2011 book
(eq. 9.15), which is valid for tau0<<1 where Wr is independent
of Doppler parameter or gamma.:

abslin1 = AbsLine('HI 1215')
N = [10**12.0, 10**12.1, 10**12.2, 10**14.0] / (u.cm*u.cm)
Wr = abslin1.get_Wr_from_N(N)
print(Wr)
<Quantity [0.00544783, 0.00685842, 0.00863423, 0.5447833] Angstrom>

We can see how the first 4 Wr estimations are good approximation to the more exact solution given by
get_Wr_from_N_b(), however, the fourth is off by a factor >2 because the approximation tau0<<1 is not satisfied.

get_N_from_Wr

It returns the approximated column density N, for a given rest-frame equivalent width
Wr. This is an approximation only valid for tau0 << 1, where
Wr is independent on Doppler parameter and gamma (see eqs. 9.14 and 9.15 of
Draine 2011). This may be useful to put upper limits on non-detections.:

abslin1 = AbsLine('HI 1215')
Wr = [0.00544783, 0.00685842, 0.00863423, 0.5447833] * u.AA
N = abslin1.get_N_from_Wr(Wr)
print(np.log10(N.value))
array([11.99999976, 12.10000029, 12.19999983, 14.])

generate_voigt

measure_aodm

Output

EmLine Class

Notebooks

Overview

This Class is a child of the abstract
SpectralLine Class Class. See that
documentation for the base methods.

EmLine is designed to organize and analyze an emission line.
In addition to the attributes defaulted to SpectralLine,
this class has:

	Property

	Variable

	Type

	Description

	Flux

	attrib[‘flux’]

	Quantity

	Line flux (erg/s)

	Flux sigma

	attrib[‘sig_flux’]

	Quantity

	1 sigma uncertainty in flux

	Flux flag

	attrib[‘flag_flux’]

	int

	Flux flag

Instantiation

The typical way to instantiate is a standard call with the
rest wavelength or name of the transition:

emisslin = EmLine('Halpha')
emisslin = EmLine(6564.613*u.AA)

By default the class searches the Galaxy LineList.

from_dict

Instantiate from a dict. The keys ltype (‘Em’)
and trans are required.

fill_data

Attributes

See the Table above.

Plots

Methods

Output

Multi XSpectrum1D

Overview

~linetools.spectra.xspectrum1d.XSpectrum1D may contain
multiple spectra, typically taken with the same instrument
and configuration. These docs describe several methods
related to multple spectra.

Generation

There are currently two ways to generate a multi-spectrum
~linetools.spectra.xspectrum1d.XSpectrum1D object.

Instantiation

The first is to feed it a set of np.arrays each with dimension
(nspec,npix).:

nspec, npix = 3, 100
wave = np.outer(np.ones(nspec), np.arange(npix))
flux = np.ones_like(wave)
sig = np.ones_like(wave)
#
mspec = XSpectrum1D(wave, flux, sig)

Collate

Alternatively, one can generate from a list of
~linetools.spectra.xspectrum1d.XSpectrum1D objects
using the collate() method.:

from linetools.spectra import utils as ltsu
mspec = ltsu.collate([spec1,spec2])

If any of the input ~linetools.spectra.xspectrum1d.XSpectrum1D objects
are already multi-dimensional, these will all be ingested.

Note: if any of the input objects has a continuum, the resultant
object will provide a continuum for all with default value=0.
These 0. values are ignored even if the spectrum is later normalized.

Slice

Return a sliced portion of the XSpectrum1D object. Indices
can be repeated. A couple of examples:

two_spec = mspec[np.array([0,1])]
one_spec = mspec[1]
two_spec = mspec[0:2]

Note that the full set of headers are maintained, i.e.
these are not sliced.

Rebin to Rest

By inputting an array of redshifts and a velocity
width, one can rebin the multi-spec to a common
rest-frame spectrum with constant dv pixels.:

rest_spec = ltsu.rebin_to_rest(mspec, zarr, 100*u.km/u.s)

The output is a new multi-spec object with a common
rest-frame wavelength array.

Smash(stack)

Smash down a multi-spec object into a 1D spectrum.:

stack = ltsu.smash_spectra(rest_spec, method='average')

 _images/AbsComponent_examples_30_0.png
1.0

0.8

0.6

0.4

g [HI 1215

=300

—200

—100

Relative Velocity (km/s)

100 200 300

_images/xspecgui_1_0.png
806

1.4
i.72)
1.0
0.8
0.6
0.4

Flux

0.2

0.0

T T T T 1
L 1 l l [
1 1 1 o
g 8 g g &
5 R N N N
8 £ C Cr
=
5 o- 2
| 1
l l 1
I 1 1
l 1 1
I l 1
I I 1 1
1. [| l 1
1 iYL T e
1 1 I] 1
11 Il 11 | | T
3950 4000 4050 4100
Wavelength

Not a valid key! super

2=
2.308300
Line Lists:
None

IsM

Galaxy
H2

Quit

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Linetools

 		
 Installation

 		
 Dependencies

 		
 Installing Linetools

 		
 Installing Linetools from Source

 		
 I just want to play with the code

 		
 I want to make a code contribution to linetools

 		
 Running Tests

 		
 Before Launching GUIs

 		
 Building Documentation

 		
 Changelog

 		
 0.3 (Unreleased)

 		
 Updates

 		
 Bug fixes

 		
 0.2 (2017-10-24)

 		
 Updates

 		
 Bug fixes

 		
 0.1 (2016-01-31)

 		
 AbsComponent

 		
 Notebooks

 		
 Simple Examples

 		
 Column Densities

 		
 Overview

 		
 Instantiation

 		
 Attributes

 		
 Inspecting

 		
 Generate a Table

 		
 Show a Stack Plot

 		
 Apparent Column Densitities

 		
 Analysis

 		
 Synthesize Columns

 		
 Curve of Growth

 		
 Misc

 		
 I/O

 		
 Synthesize Components

 		
 Tables

 		
 Use Components to create a spectrum model

 		
 AbsSystem

 		
 Notebooks

 		
 Simple Examples

 		
 Overview

 		
 Instantiation

 		
 Attributes

 		
 Sub Classes

 		
 Generic

 		
 Plots

 		
 Methods

 		
 AbsLines

 		
 Components

 		
 ionN

 		
 Output

 		
 AbsSightline

 		
 Notebooks

 		
 Overview

 		
 Instantiation

 		
 Inspecting

 		
 Generate a Table

 		
 I/O

 		
 RelAbund

 		
 Notebooks

 		
 Overview

 		
 Instantation

 		
 Init

 		
 Ionic Column Table

 		
 By Hand

 		
 Usage

 		
 SolarAbund

 		
 Notebooks

 		
 Simple Examples

 		
 Overview

 		
 LineList

 		
 Overview

 		
 Instantiation

 		
 Accessing single transitions

 		
 Methods

 		
 subset_lines()

 		
 set_lines()

 		
 all_transitions()

 		
 strongest_transitions()

 		
 available_transitions()

 		
 SpectralLine

 		
 Notebooks

 		
 Overview

 		
 Sub Classes

 		
 Attributes

 		
 Analysis

 		
 Methods

 		
 cut_spec

 		
 ismatch

 		
 measure_ew

 		
 measure_kin

 		
 measure_restew

 		
 to_dict

 		
 Utilities

 		
 parse_speclines

 		
 transtable_from_speclines

 		
 XSpectrum1D

 		
 Overview

 		
 Attributes

 		
 Init

 		
 Reading

 		
 Masking

 		
 Methods

 		
 Writing

 		
 Plotting

 		
 Rebinning

 		
 Continuum fitting

 		
 Smoothing

 		
 Other methods

 		
 Multi-spec methods

 		
 File Formats Read

 		
 GUIs

 		
 Notebooks

 		
 XSpecGui

 		
 XAbsSysGui

 		
 Overview

 		
 Continuum fitting

 		
 XSpecGUI

 		
 XAbsSysGui

 		
 Scripts

 		
 lt_xspec

 		
 Example Notebook

 		
 lt_plot

 		
 lt_absline

 		
 lt_radec

 		
 lt_line

 		
 lt_solabnd

 		
 lt_continuumfit

 		
 The linetools API

_static/file.png

_static/up.png

_static/up-pressed.png

_images/AbsComponent_ColumnDensities_18_0.png
x1012

—250

é Sill 1260

Ls Sill 1304

E) Sill 1526

o ——$ilI 1808

|

g

2 1.0

=]

g

2

o}

Yos

(=1

[} I
g

o —
< 0.0 ~rTtp -

—-200 —150 —100 =50
Relative Velocity (km/s)

0

50

_images/AbsComponent_ColumnDensities_25_1.png
-10 =5

_images/AbsComponent_ColumnDensities_10_0.png
T2

B . Y ety

[RCCIN-T O)
— o 3333

B 1 B

[RCCIN-T O)
— o 3333

T) N e

o © o
S 3

0.4

50

—100 =50
Relative Velocity (km/s)

—150

—200

_images/AbsComponent_ColumnDensities_27_0.png
10g10 (W/ﬂ.)

logN = 13.69+0.05
b=49.2+6.36 km /s .-

-6.0
-8.0 -7.5 -7.0 -6.5 —6.0 —-5.5 5.0 —-4.5 —4.0

10g10 (fﬂ.)

